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Abstract

A boosted cross-domain categorization framework that utilizes labeled data from
other visual domains as the auxiliary knowledge for enhancing the original learning sys-
tem is presented. The source domain data under a different data distribution are adapted
to the target domain through both feature representation level and classification level
adaptation. The proposed framework is working in conjunction with a learned domain-
adaptive dictionary pair, so that both the source domain data representations and their
distribution are optimized in order to match the target domain. By iteratively updating
the weak classifiers, the categorization system allocates more credits to “similar” source
domain samples, while abandoning “dissimilar” source domain samples. Using a set of
Web images and selected categories from the HMDB51 dataset as the source domain
data, the proposed framework is evaluated with both image classification and human ac-
tion recognition tasks on the Caltech-101 and the UCF YouTube datasets, respectively,
achieving promising results.

1 Introduction

During the last decade, knowledge transfer-based learning methods have gained their pop-
ularity in computer vision and pattern recognition [22]. Utilizing auxiliary data from other
resources, transfer learning techniques aim at either dealing with the insufficient training
data issue, e.g., one-shot-learning [5], [19] and zero-shot-learning [20], [21], or enhancing
the discriminability of existing learning systems [33]. Data representation level knowledge
transfer and classification level knowledge transfer are two major transfer learning branches
in terms of learning stages. The former includes learning a bipartite graph via co-clustering
[14], learning a cross-domain dictionary pair [33], etc., and the latter includes learning an
adaptive-SVM (A-SVM) classifier [28], a projective model transfer SVM (PMT-SVM) clas-
sifier [2], TrAdaBoost [7], etc. Some popular knowledge transfer scenarios in computer
vision include 1) cross-view action recognition [14], where training and query actions come
from different observation viewpoints; 2) cross-domain image classifciation [6], where the
depth information can be incorporated in the training stage to mine more information from

c⃝ 2014. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.



2 ZHU, SHAO AND TANG: BOOSTED CROSS-DOMAIN CATEGORIZATION

the RGB channel of query images; 3) cross-modality information retrieval [18], which at-
tempts to retrieve documents from one media form (e.g., image) to another media form (e.g.,
text).

We introduce a boosted cross-domain categorization (BCDC) framework that utilizes
labeled data from other domains as the source data to span the intra-class diversity of the
original learning system. In addition to the manually annotated information in the target do-
main, partially labeled data from another visual domain are provided as the source domain.
A boosted classification framework is introduced to work in conjunction with a cross-domain
dictionary learning method [33]. Through iteratively updating both the source domain data
representations and their distribution, the source domain training instances can be optimized,
and thus can help improve the visual categorization tasks in the target domain. In compar-
ison, the proposed learning framework shares the same basic principle of sequentially up-
dating the impacts of training instances; yet our learning framework attempts to sequentially
update the data representations of those “dis-similar” samples instead of simply weighting
less on them. Thus, unlike most transfer learning frameworks, knowledge is transferred
through both the data representation level and the classification level in the proposed BCDC
framework.

2 Related work
Dictionary learning has seen a variety of applications in computer vision tasks along with
sparse representations, e.g., face recognition [25] and image denoising [32]. Using an over-
complete dictionary, sparse modeling of signals can approximate the input signal by a sparse
linear combination of items from the dictionary. Many algorithms [12], [24], [25] have
been proposed to learn such a dictionary according to different criteria, among which the
K-Singular Value Decomposition (K-SVD) algorithm [1] is a classical dictionary learning
algorithm that focuses on the reconstructive ability. Zhu and Shao [33] extended the clas-
sical dictionary learning approach to a weakly-supervised cross-domain learning scenario.
By learning a discriminative, reconstructive and domain-adaptive dictionary pair, such a
cross-domain dictionary learning approach achieves promising performance on popular vi-
sual categorization benchmarks. However, such a method considers all training data equally,
which does not allow the existence of a large number of “noisy” data.

AdaBoost [9] is a classical machine learning algorithm that aims at boosting the per-
formance of weak classifiers by carefully adjusting the weights of training instances. Ad-
aBoost can be easily generalized to a wide range of applications by jointly working with
other learning algorithms to achieve improved performance. Specifically, AdaBoost con-
structs a “strong" classifier as a linear combination of weak classifiers, where each weak
classifier is considered to be helpful as long as it results in an error rate lower than 0.5 for
binary classification. In each iteration, previous predictions are used to update the weights
of training instances so that the weights of the incorrectly-classified instances in the previous
iteration are increased while the weights of the correctly-classified instances are decreased.
Leveraging such a weight updating mechanism, Zhang et al. [30] attempted to capture more
discriminative information by learning a set of codebooks in sequence. As an extension to
AdaBoost, Dai et al. [7] proposed TrAdaBoost to utilize the mismatched data in an auxil-
iary feature domain for the classification task in the target feature domain. In each boosting
iteration of TrAdaBoost, the weights of those wrongly predicted training instances in the
auxiliary domain are decreased so that their impacts towards the global data distribution are
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weakened. However, similar as other classifier level transfer learning techniques, the intrin-
sic data representations of those “dis-similar” training instances are not changed through the
boosting procedure of TrAdaBoost.

3 Boosted cross-domain categorization

3.1 Problem formulation

Some general notions are defined as follows for later usage: let Dt = Dt
l ∪Dt

u denote the
target domain data, where the labeled parts are denoted by Dt

l and the unlabeled parts are de-
noted by Dt

u. Similarly, let Ds =Ds
l ∪Ds

u denote the source domain data. Since the unlabeled
source domain data Ds

u and the labeled source domain data Ds
l share the same feature distri-

bution, Ds
u are first labeled in a semi-supervised manner using an efficient manifold ranking

algorithm [31] so that they can be formed as labeled parts Ds
l∗ for the next stage usage. In

order to bring data across different domains into the same feature space, knowledge transfer
is conducted upon both Dt

l and D̂s =Ds
l ∪Ds

l∗ . The goal is to learn a combination of a set of
classifiers and specify different class labels to the unlabeled instances Dt

u using the labeled
ones Dl =Dt

l ∪D̂s through an iterative boosting procedure.

3.2 Learning a cross-domain dictionary pair

Let Yt be the set of target domain n-dimensional input signals, which contain N training
instances, i.e., Yt = [y1

t ,y
2
t , ...,y

N
t ]∈ ℜn×N . Learning a reconstructive dictionary for obtaining

the sparse representation of the target domain signals Yt can be accomplished by solving the
following optimization problem:

⟨Dt ,Xt⟩=arg min
Dt ,Xt

∥Yt −DtXt∥2
2

s.t.∀i,∥xi
t∥0 ≤ T,

(1)

where Dt ∈ ℜK×n′ denotes the target domain dictionary and Xt = [x1
t , ...x

N
t ] ∈ ℜn′×N denotes

the set of sparse signals. The number of dictionary items Kt is set to significantly exceed
the number of training instances N to secure that the dictionary is over-complete. T is the
sparsity constraint factor that limits the number of non-zero elements in the sparse codes, so
that the number of items in the decomposition of each signal xi is less than T .

The choice of a method for dictionary learning critically determines the performance
of sparse representation. The K-SVD algorithm [1] is a popular and efficient dictionary
learning method that focuses on minimizing the reconstruction error. Some discriminative
approaches [29], [27], [16], [17], [15], [3] show their privilege over the K-SVD algorithm
by incorporating extra discriminative terms into the objective function for dictionary learn-
ing. However, the discriminative terms appear to be introduced to these approaches without
considering the data distribution of the training samples, i.e., samples with high confidence
possess the same impact as those with low confidence. Such weakness becomes even more
severe when dealing with data mismatching scenarios. When allocated with discriminative
elements under no smoothness guarantee, performing dictionary learning on both target do-
main data and mismatched data from a different feature domain can break the smoothness
property of the original target domain.
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Zhu and Shao [33] extended the dictionary learning function in equation 1 to a cross-
domain scenario, and included a discriminative term into the objective function. The dis-
criminative cross-domain dictionary learning function is formulated as:

⟨Dt ,Ds,Xt ,Φ,P⟩
= arg min

Dt ,Ds,Xt ,Φ,P
∥Yt −DtXt∥2

2

+α∥Q−ΦXt∥2
2 +β∥H−PXt∥2

2

+∥YsAT −DsXt∥2
2 s.t.∀i, ∥xi

t∥0 ≤ T .

(2)

Similar as Yt and Dt , Ys and Ds denote the input signals and the dictionary in the source
domain, respectively. Scalers α and β are set to control the relative contribution of the terms
|Q−ΦXt∥2

2 and ∥H−WXt∥2
2, where Φ is a linear transformation matrix that maps the original

sparse codes to be in correspondence with the sparse codes Q = [q1,q2, · · · ,qN ] ∈ ℜK×N of
the target domain input signal Yt and H = [h1,h2, · · · ,hN ] ∈ ℜC×N are the class labels of Yt ,
given that the non-zero element indicates the class of an input signal within each column
hi = [0, · · · ,1, · · · ,0]T ∈ ℜC. The term A is a reversible binary matrix which establishes the
one-to-one correspondences across the target domain data Yt and the source domain data
Ys. A is assumed as leading to a perfect mapping across the sparse codes Xt and Xs, thus
each matched pair of samples in different domains possesses an identical representation after
encoding, i.e., ∥XT

t −AXT
s ∥2

2 = 0 and ∥Y T
t −AY T

s ∥2
2 = 0. The discriminative information are

included in the dictionary learning function through the terms Q and H. As can be observed
from the definitions of both terms, equal credits are allocated to all data. However, such
an assumption that all samples can equally contribute to the categorization system does not
apply real-world scenarios.

3.3 Boosted classification

In order to distinguish the “dissimilar” data from the smooth data, we include the weighted
discriminative sparse codes into the learning function. Specifically, qi = [q1

i ,q
2
i , · · · ,qK

i ]
T =

[0, · · · ,wi,wi, · · · ,0]T ∈ ℜK , where the non-zeros occur at those indices where yi
t ∈ Yt and

Xk
t ∈ Xt share the same class label. Given Xt = [x1,x2, · · · ,x6] and Yt = [y1,y2, · · · ,y6], and

assuming x1, x2, y1 and y2 are from class 1, x3, x4, y3 and y4 are from class 2, x5, x6, y5 and
y6 are from class 3, Q is then defined with the following form:

w1 w2 0 0 0 0
w1 w2 0 0 0 0
0 0 w3 w4 0 0
0 0 w3 w4 0 0
0 0 0 0 w5 w6
0 0 0 0 w5 w6

 , (3)

Since predictions are made with respect to the data distribution of Xt , wi is included in each
item of H. Thus H can be defined as follows according to the same example in Equation (3) w1 w2 0 0 0 0

0 0 w3 w4 0 0
0 0 0 0 w5 w6

 . (4)
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By defining Y = (Y T
t ,(YsAT )T ,

√
αQT ,

√
βHT )T and D = DT

t ,D
T
s ,
√
(α)ΦT ,

√
(β )PT )T ,

where column-wise L2 normalization is applied to D, the objective function in equation 2
can be solved through sequentially updating dictionary atoms and sparse codes as in [33].

Algorithm 1 Boosted cross-domain dictionary learning

Input the labeled target domain data Dt
l and the source domain data D̂s, the maximum

number of iterations Max.iter and the Weak Learner.
Output a “strong” classifier F(·) and updated representations of the source domain in-
stances.
Initialize the data distribution as uniform, i.e., the initial weights w1 =(w1

1,w
1
2, · · · ,w1

N+M)
have an identical value. Cross-domain discriminative dictionary learning is applied to both
target domain and source domain data under the initialized uniform distribution, so that
Dt

l and D̂s can be represented by Xt and X1
s respectively.

for j = 1 to Max.iter do

1. Set data distribution p j = w j

∑N+M
i=1 w j

i

2. Update X j
s as the new representation of D̂s under data distribution p j with cross-

domain discriminative dictionary learning.

3. Compute the hypothesis h j
t : Xt → l(Xt) and h j

s : X t
s → l(Xs), providing that p j is over

both Dt
l and D̂s.

4. Calculate the error ε j of h j
t :

ε j =
N

∑
i=1

w j
i ×|h j

t (xi)− l(xi)|
∑N

i w j
i

,

where ε j is required to be less than 0.5.

5. Set β j
t = ε j

1−ε j and βs =
1

1+
√

2lnM/Max.iter

6. Update the new weight vector:

w j+1
i =


w j

i β j
t
−|h j

t (xi)−l(xi)|
, 1 6 i 6 N

w j
i β |h j

s (xi)−l(xi)|
s , otherwise.

end for

We consider the similarities between the source domain training instances D̂s and the
target domain training instances Dt

l according to the present distribution. When a set of
source domain instances are incorrectly predicted due to distribution changes by the present
learner, these instances are considered to be most “dissimilar” to the target domain instances.
Thus, the weights of these training instances are decreased correspondingly by multiplying

the factor β |h j
s (xi)−l(xi)|

s ∈ (0,1], where l(xi) returns the label of instance xi, so that these
instances will affect the learning process less in the next iteration. In addition to updating the
weights, cross-domain discriminative dictionary learning is applied to lead those “dissimilar”
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Figure 1: Example of a CART tree.

instances towards more appropriate representations. The confidence of the discriminative
term is measured by allocating the updated weights to the binary representation, so that
those correctly predicted instances can make more impacts when learning the dictionary
pair. Consequently, when the stop criterion is reached, some “dissimilar” training instances
can be represented in a “similar” form, and the training instances in D̂s which lead positive
impacts to the learning system will process larger training weights than those “dissimilar”
ones. The weight updating mechanism in the target domain is kept in accordance with the

original AdaBoost [9] by multiplying the factor β j
t
−|h j

t (xi)−l(xi)|, so that the weights of those
incorrectly classified instances in Dt

l are increased in order to make the new classifier focus
on those instances in the next iteration. Since the aim is only to guarantee the instances in
the target domain being correctly classified, the two cross purpose weighting mechanisms
within the same learning system do not conflict. The pseudo code of the proposed boosted
learning technique is given in Algorithm 1.

3.4 Weak classifiers
The Classification and Regression Trees (CART) [4] is used as the weak classifier in this
work. The CART classification is a process of tree traverse, where a tree node represents a
predicate and the value associated with a tree leaf is the class of the presented instance. For
the construction of a node in CART, we first find a threshold for each of the n dimensions that
separates the training instances with the least error. When the dimension i with the least error
is chosen, the node can be constructed as either a predicate or branches that are connected
with tree leafs. All the errors are evaluated according to the updated weights, so that the
training instances can be learned with respect to their present distribution. An example of a
CART tree is shown in Figure 2.

4 Experiments
The experiments are conducted on 4 different data sources, where the UCF YouTube dataset
[13] and the Caltech-101 dataset [8] are treated as the target domains, and the HMDB51
dataset [11] and some Web images indexed by Google are treated as the source domains. To
obtain the source domain Web images, we select the first 20 categories out of the 101 cate-
gories, and randomly choose 20-30 images for each category among the first 100 searching
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results returned by Google when using category names as the key words. For both action
recognition and image classification tasks, the BCDC method is evaluated on the categories
which exist in both the target and source domains.

4.1 Image classification
We adopt the dense SIFT descriptors plus the sparse coding approach [26] for low-level and
mid-level image representations. The weight α on the label constraint term and the weight
β on the classification error term are set as 4 and 2 respectively. We run our method on five
different partitions of the Caltech-101 dataset, where the number of 10/15/20/25/30 images
are randomly chosen as the training images while the remaining images are used for test-
ing for each partition. In order to demonstrate the effectiveness of our proposed approach,
we compare with the baseline Sparse-coding Spatial Pyramid Matching (ScSPM) [26], K-
Singular Value Decomposition (K-SVD) [1], Label Consistent-Singular Value Decompo-
sition (LC-KSVD) [10], AdaBoost [9], and Weakly Supervised Cross-Domain Dictionary
Learning (WSCDDL) [33] 1 and Transfer AdaBoost (TrAdaBoost) [7]. Experimental results
are reported in TABLE 1 and TABLE 2 when source domain data are applied or not applied
respectively. Results on the first 20 selected image categories of the Caltech-101 dataset
using five different numbers of training data are reported, and all the results are obtained
by averaging 5 runs of randomly selected training and testing images to guarantee the reli-
ability. The proposed BCDC method consistently leads to the best performance over other
methods. The reported results of ScSPM, K-SVD and LC-KSVD in TABLE 1 are obtained
by simply treating the source domain data as extra training data without knowledge transfer.
Note that the performance of ScSPM, K-SVD and LC-KSVD is even decreased when source
domain data are used, which further validates the importance of our boosted cross-domain
categorization method. Figure 3 shows the error rate comparison of the proposed method
and TrAdaBoost according to the boosting iterations on the Caltech-101 dataset when using
30 training samples per category.

Table 1: Performance comparison between the BCDC and state-of-the-art methods on the
Caltech-101 dataset with source domain data.

Algorithm ScSPM [26] K-SVD [1] LC-KSVD [10] TrAdaBoost [7] WSCDDL [33] BCDC

Source data Yes Yes Yes Yes Yes Yes

30 79.11% 79.98% 81.32% 84.37% 86.52% 888777...333444%

25 75.05% 75.06% 79.68% 81.46% 84.31% 888555...999000%

20 65.44% 67.40% 73.04% 79.72% 80.02% 888222...333222%

15 49.66% 54.12% 69.23% 75.53% 77.59% 777888...666999%

10 30.65% 46.28% 64.89% 72.87% 74.98% 777666...000444%

4.2 Action recognition
We extract the dense trajectories [23] as local features from raw action videos and project
local features on a codebook using Locality Constrained Linear Coding (LLC) [24]. We run

1Since BCDC requires the target domain images share identical image categories as the source domain images,
results are reported for the first 20 categories on the Caltech-101 dataset in this paper. On the other hand, results are
reported for all image categories in [33].
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Table 2: Performance comparison between the BCDC and state-of-the-art methods on the
Caltech-101 dataset when the source domain data are only used by the BCDC.

Algorithm ScSPM [26] K-SVD [1] LC-KSVD [10] AdaBoost [9] BCDC

Source data No No No No Yes

30 85.36% 84.69% 85.60% 79.46% 888777...333444%

25 83.23% 82.16% 83.47% 74.83% 888555...999000%

20 80.11% 80.07% 80.59% 74.22% 888222...333222%

15 76.66% 74.82% 76.96% 71.91% 777888...666999%

10 72.87% 72.55% 72.37% 68.35% 777666...000444%

our method on three different partitions of the UCF YouTube dataset, where we randomly
choose all action categories performed by the number of 5/9/16 actors as the training actions
while using the remaining actions as the testing actions for each partition. 30 most relevant
actions are chosen from each of the 7 source domain categories, and they are represented in
the same manner as the target domain actions and coded with the same codebook. The same
values of the weights α , β and K-SVD iterations are adopted as in the image classification
task. Similarly, we compare the performance of BCDC with LLC, K-SVD, LC-KSVD,
AdaBoost, TrAdaBoost and WSCDDL2 in TABLE 3 and TABLE 4 when source domain
data are included or not respectively. The reported results of LLC, K-SVD and LC-KSVD
in TABLE 3 are obtained by treating the source domain data as extra training data without
knowledge transfer. Again, the proposed BCDC method consistently outperforms the other
methods. As expected, simply including source domain data without considering the data
divergence degrades the performance of LLC, K-SVD and LC-KSVD in TABLE 4.

According to the obtained results on both image classification and action recognition
tasks, the proposed BCDC method can effectively deal with the data distribution mismatch
problem. It outperforms ScSPM and LLC by 22.07% and 6.41% in average respectively,
and outperforms TrAdaBoost by 3.27% and 3.17% in average, on the Caltech-101 and the
UCF YouTube datasets respectively when using the source domain data. Additionally, when
using the transferred source domain data as auxiliary training samples, the BCDC method
can improve the performance of the original ScSPM and LLC, which are free of the data
mismatch problem, by 2.41% and 3.53% in average, which are significant improvements
over the leading results.

Table 3: Performance comparison between the BCDC and state-of-the-art methods on the
UCF YouTube dataset with source domain data.

Algorithm LLC [24] KSVD [1] LC-KSVD [10] TrAdaBoost [7] WSCDDL [33] BCDC

Source data Yes Yes Yes Yes Yes Yes

16 79.78% 75.43% 82.87% 82.40% 83.26% 888444...666444%

09 68.38% 64.54% 67.14% 69.20% 72.01% 777333...000555%

05 63.35% 59.35% 63.68% 65.46% 67.37% 666888...888999%

2For the same reason as stated in the above footnote, results are reported for the 7 selected action categories in
this work, while results are reported for all action categories in [33].
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Figure 2: Error rate comparison of the proposed BCDC method with TrAdBoost and ScSPM
on the Caltech-101 dataset.

Table 4: Performance comparison between the BCDC and state-of-the-art methods on the
UCF YouTube dataset when the source domain data are only used by the BCDC.

Algorithm LLC [24] KSVD [1] LC-KSVD [10] AdaBoost [9] BCDC

Source data No No No No No

16 82.77% 74.57% 83.15% 79.40% 888444...666444%

09 68.38% 62.63% 69.82% 69.61% 777333...000555%

05 64.84% 59.37% 65.17% 65.52% 666888...888999%

5 Conclusion

In this paper we have presented a BCDC framework for categorising the target domain data
using data from a different domain. In conjunction with a learned cross-domain dictionary
pair, the proposed BCDC approach learns a set of boosted weak classifiers. Unlike the popu-
lar existing transfer learning techniques, the BCDC approach allows data adaptation through
both feature representation level and classification level. Promising results are achieved on
both image classification and action recognition, where knowledge from either the Web or a
related dataset is transferred to standard benchmark datasets.
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