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Abstract

In this paper, we propose a simple but powerful prior, color attenuation prior, for
haze removal from a single input hazy image. By creating a linear model for
modelling the scene depth of the hazy image under this novel prior and learning the
parameters of the model by using a supervised learning method, the depth
information can be well recovered. With the depth map of the hazy image, we can
easily remove haze from a single image. Experimental results show that the proposed
approach is highly efficient and it outperforms state-of-the-art haze removal
algorithms in terms of the dehazing effect as well.

1 Introduction
Outdoor images taken in bad weather (e.g., foggy or hazy) usually lose contrast and
fidelity, resulting from the fact that light is absorbed and scattered by the turbid medium
such as particles and water droplets in the atmosphere during the process of propagation.
Moreover, most automatic systems, which strongly depend on the definition of the input
images, fail to work normally caused by the degraded images. Therefore, image dehazing
as a pre-processing restoration [1, 2, 3] step will benefit various algorithms that require
image/video analysis.

Since the density of the haze is different from place to place and it is hard to detect in
the hazy image, image dehazing is a challenging task. Early researchers use the traditional
techniques of image processing to remove the haze from a single image (for instance,
histogram-based dehazing methods [4, 5, 6]). However, the dehazing effect is limited,
because a single hazy image can hardly provide much information. Later, researchers try to
improve the dehazing effect with multiple images. In [7, 8], polarization-based methods
are used for dehazing with multiple images which are taken with different degrees of
polarization. Narasimhan et al. [9, 10, 11] propose haze removal approaches with multiple
images of the same scene under different weather conditions. In [12, 13], dehazing is
conducted based on the given depth information.

Recently, significant progress has been made in single image dehazing based on the
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Figure 1: An overview of the proposed dehazing method.

physical model. Under the assumption that the local contrast of the haze-free image is
much higher than that in the hazy image, Tan [14] propose a novel haze removal method
by maximizing the local contrast of the image based on Markov Random Field (MRF).
Although Tan’s approach is able to achieve impressive results, it tends to produce over-
saturated images. Fattal [15] propose to remove haze from color images based on
Independent Component Analysis (ICA), but the approach is time-consuming and cannot
be used for grayscale image dehazing. Furthermore, it has some difficulties to deal with the
dense-haze images. Based on a large amount of observations on haze-free images, He et al.
[16, 17] find the dark channel prior (DCP) that, in most of the non-sky patches, at least one
color channel has some pixels whose intensities are very low and close to zero. With the
help of this prior knowledge, they eliminate the distribution of the thickness of haze, and
then recover the haze-free image by the atmospheric scattering model. The DCP approach
is simple and effective in most cases. However, it cannot well handle the sky images and is
computationally intensive. An improved algorithm, guided image filtering, is proposed in
[21, 22] to substitute the time-consuming soft matting [20] used in [16, 17] later.
Assuming that the depth of the scene is continuous, Tarel et al. [21] introduce a fast
dehazing approach based on the median filter. Unfortunately, this algorithm cannot be used
on all hazy images because such a strong assumption is violated in some cases. Moreover,
it is not adaptive as too many parameters need to be controlled in the approach. Nishino et
al. [22, 23] propose a probabilistic dehazing method, which models the image with a
factorial Markov Random Filed to estimate the scene radiance and the depth information.
This approach can recover most details from the hazy image, but the result suffers from
oversaturation.

In this paper, we propose a novel color attenuation prior for image dehazing. This
simple and powerful prior can help to create a linear model for the scene depth of the hazy
image. By learning the parameters of the linear model with a supervised learning method,
the bridge between the hazy image and its corresponding depth map is built effectively.
With the recovered depth information, we can easily remove the haze from the single hazy
image. An overview of the proposed dehazing method is shown in Figure 1. The efficiency
of this dehazing method is dramatically high and the dehazing effect is also superior to that
of popular dehazing algorithms as we will show in Section 5.

The remainder of this paper is organized as follows: In Section 2, we review the
atmospheric scattering model which is widely used for image dehazing and give a concise
analysis on the parameters of this model. In Section 3, we discuss the proposed approach
of recovering the scene depth using the color attenuation prior. In Section 4, the method of
image dehazing with the depth information is described. In Section 5, we present and
analyse the experimental results. Finally, we summarize this paper in Section 6.
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2 Atmospheric scattering model
To describe the formation of a hazy image, the atmospheric scattering model, which was
proposed by McCartney in 1976 [24], is widely used in computer vision and image
processing. Narasimhan and Nayar [10, 25] further derive the model later, and the model
can be expressed as follows:

( ) ( ) ( ) (1 ( ))x x t x t x  I J A (1)
( )( ) e d xxt  (2)

where I is the hazy image, J is the scene radiance representing the haze-free image, A is
the atmospheric light, t is the medium transmission,  is the scattering coefficient of the
atmosphere and d is the depth of scene. Since I is known, the goal of dehazing is to
eliminate A and t, then restore J according to Equation (1).
We notice that the depth of the scene d is the most important information. On the one

hand, since the scattering coefficient  can be regarded as a constant, the medium
transmission t can be estimated easily if the depth of the scene is given according to
Equation (2). On the other hand, when the depth d(x) tends to infinity, the transmission t(x)
tends to zero and we have:

( ) , ( )x d x I A (3)

Equation (3) shows that the intensity of the pixel, which makes the depth d tend to
infinity, can stand for the value of the atmospheric light A. In this condition, the task of
dehazing can be further converted into depth information recovery. However, it is a
challenging task to obtain the depth map with a single hazy image.
In the next section, we present a novel approach to recover the depth information

directly for a single hazy image.

3 Scene depth recovery

3.1 Color attenuation prior
Haze is traditionally an atmospheric phenomenon in which smoke, dust and other dry

particles obscure the clarity of the scenery objects. Environmental illumination tends to be
scattered by this kind of turbid medium and the white airlight is formed. It turns out that
images taken in such bad weather are often much brighter and the color of the scenery
object fades in different degree. The brightness of the pixels within the hazy image
becomes much higher than that in the real scene, and the saturation of these pixels is pretty
low. In this context, regions with haze are characterized by high brightness and low
saturation. We believe that this cannot be coincidence and do a lot of experiments on the
hazy images to find the statistics and seek a novel prior for image dehazing. The main
conclusion is that the density of the haze is positively correlated with the difference
between the brightness and the saturation. We illustrate this in Figure 2. Since the haze
density increases along with the change of scene depth in general, we can make an
assumption that the depth of the scene is positively correlated with the density of the haze
and we have:

( ) ( ) ( ) ( )d x c x v x s x   (4)
where d is the scene depth, c is the haze density, v is the brightness of the scene and s is the
saturation. We regard this statistics as color attenuation prior. Although we have
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Figure 2: Hazy images and their corresponding histograms of the difference between
brightness and saturation.

known that there must be some links among d, v and s, Equation (4) is just an intuitional
result of the observation and it cannot be an accurate expression.

3.2 Color attenuation prior
As the difference between the brightness and the saturation can approximately represent
the density of the haze (see Figure 2), we boldly assume that the relationship among the
scene depth d, the brightness v and the saturation s is linear. Based on this assumption, we
can create a linear model as follows:

0 1 2( ) ( ) ( )d x v x s x     (5)
where d is the scene depth, v is the brightness, s is the saturation, and ( 0 , 1 , 2 ) are the
unknown linear coefficients. Although the definition of the scene depth d has been given
by Equation (5), the rationality of the assumption has not been validated. To answer the
question why the relationship among d, v and s is linear in our model, we calculate the
gradient of d in Equation (5) and we have:

1 2d v s      (6)
Since v and s are actually the two single-channel images (the brightness channel and the
saturation channel of the HSB color space) into which the hazy image I split, Equation (6)
ensures that d has an edge only if I has an edge. In other words, the linear model has the
important edge-preserving property, which makes sure that the depth information can be
well recovered even near the depth discontinuities in the scene. This linear model works
really well as we will show later.
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In the next section, we use a simple and efficient supervised learning method to
determine the coefficients ( 0 , 1 , 2 ).

3.3 Learning strategy for the linear coefficients
In order to learn the coefficients ( 0 , 1 , 2 ) accurately, the training data are necessary. A
training sample consists of a hazy image and its corresponding ground truth depth map in
our case. To seek a solution that minimizes the difference between the scene depth d(x)
estimated by Equation (4) and the true depth, we minimize the following squared loss
function:

2
0 1 2

1 1

1 ( ( ) ( ( ) ( )))
in

ri j i j i j
i j

L d x v x s x
n



  
  

    (7)

Here, n is the number of the training samples, i is the size of the hazy image of the ith
training sample,  is the total number of the pixels of all the hazy images in the training
set, rid is the depth map of the ith training sample, iv and is are the brightness channel and
the saturation channel of the hazy image of the ith training sample respectively.

The problem of estimating the linear coefficients ( 0 , 1 , 2 ) can be converted into
the problem of solving the following equations:
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To facilitate the calculation, we first define the two matrices X and θ , and combine all
the rid into a vector D as follows:
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Now we can rewrite Equation (7) in a more concise way as below:
T1 ( ) ( )L

n 
  D Xθ D Xθ (10)

Equation (10) is actually the linear regression model [26, 27] and its solution is given by:
T 1 T( )θ X X X D (11)

Although the learning strategy has been given, the training samples are not easy to collect
since it is very difficult to accurately measure depths in outdoor scenes with current depth
cameras. In order to obtain the accurate depth information as far as possible, we use the
dehazing results of Kopf et al. [13] to make an inverse calculation to acquire the depth
maps. In [13], Kopf used the city model from Bing to acquire the depths for the New York
images and a plain 30-meter digital terrain model for the Yosemite images. We learn the
coefficients from the obtained depth maps and their corresponding hazy images according
to Equation (11), and a typical learning result is that 0 0.1893  , 1 1.0267  and
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2 1.2966   . Once values of the coefficients have been determined, they can be used for
any single hazy image. These parameters will be used for recovering the scene depth of the
hazy image in this paper.

3.4 Estimation of the depth information
As the relationship among the scene depth d, the brightness v and the saturation s has been
modelled and the coefficients have been estimated, we can recover the depth map of the
given input hazy image according to Equation (5). In Figure 3, we show that the depth
maps d and the transmission maps t of the hazy images can be well recovered by the
proposed method. With the estimated depth map, the task of dehazing is no longer difficult.

Figure 3: Results of recovering the depth map and the transmission map. (a) Input hazy
images. (b) Our recovered depth maps. (c) Our recovered transmission maps.

4 Image Dehazing

4.1 Estimation of the atmospheric light
We have explained the main idea of the method of estimating the atmospheric light in
Section 2. In this section, we describe the method in more detail. As the depth map of the
input hazy image has been recovered, the distribution of the scene depth is known. Figure
4(a) shows the estimated depth map of the hazy image. Bright regions in the map stand for
the distant places.

Figure 4: Estimation of the atmospheric light. (a) Our recovered depth map and the
brightest region. (b) Input hazy image. (c) The patch from which our method obtains the
atmospheric light.
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According to Equation (1) and Equation (2), if ( )d x  , then ( ) 0t x  and ( )x I A .
Based on this theory, we pick the top 0.1 percent brightest pixels in the depth map, and
select the pixel with highest intensity in the corresponding hazy image I among these
brightest pixels as the atmospheric light A (see Figure 4(b) and Figure 4(c)).

4.2 Scene radiance recovery
Now that the depth of the scene d and the atmospheric light A are known, we can estimate
the transmission t easily according to Equation (2) and recover the scene J in Equation (1).
For convenience, we rewrite Equation (1) as follows:

( )

(x) (x)( )
( ) d xx
t x e 

 
   

I A I AJ A A (12)

where the scattering coefficient  determines the intensity of dehazing indirectly. For
avoiding producing too much noise, we restrict the value of the transmission t(x) between
0.1 and 0.9. So the final function used for recovering the scene radiance J in the proposed
method can be expressed by:
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where J is actually the haze-free image we want to obtain finally. Figures 5, 6 and 7 show
some final results of dehazing of the proposed method.

5 Experiments
In order to verify the effectiveness of the proposed dehazing method, we test it on various
hazy images and compare with He et al.’s [16, 17], Tarel et al.’s [21] and Nishino et al.’s
[23] methods. All the algorithms are implemented in the MatlabR2013a environment on a
P4-3.3GHz PC with 6GB RAM. The parameters we used in the proposed method are
initialized as follows: 0.95  , 0 0.1893  , 1 1.0267  and 2 1.2966   . For fair
comparison, the parameters used in the three popular dehazing method are set to be
optimal according to their original papers ([16, 17], [21] and [23]).

5.1 Qualitative Comparison
Figure 5 shows the comparison between our approach and the method by Tarel et al. [21].
As shown in Figure 5(b), though most of the haze is removed, halo effects appear near the
depth discontinuities in the dehazed images (for instance, the leaves at the top region of the
first image and the roof of the building in the second image in Figure 5(b)) due to the fact
that median filter used in [21] is not an edge-preserving filter. Compared with Tarel et al.’s
results, our results are free from the problem of halo effects and the edges of the objects
are much sharper as can be seen in Figure 5(c).

Figure 6 shows a comparison between results obtained by [23] and our approach. The
dehazed images have high contrast and the details of the scene are well recovered by
Nishino et al.’s method as we can see in Figure 6(b). However, the results tend to be




